
SmartyBundle Documentation
Release 1.3.1

Vítor Brandão

Oct 13, 2018

Contents

1 Introduction 3
1.1 What is Smarty? . 3
1.2 Requirements . 4
1.3 License . 4

2 Installation 5
2.1 Download SmartyBundle . 5
2.2 Enable the bundle . 5
2.3 Enable the Smarty template engine in the config . 5

3 Usage 7
3.1 Basic usage . 7
3.2 Template Inheritance . 7
3.3 Referencing Templates . 8

4 Cookbook 11
4.1 Injecting variables into all templates (i.e. Global Variables) . 11
4.2 Trim unnecessary whitespace from HTML markup . 11

5 Commands 13
5.1 Compile Command . 13

5.1.1 Usage . 13
5.1.2 Available Options . 13

6 Extensions 15
6.1 Actions Extension . 15
6.2 Assetic Extension . 15
6.3 Assets Extension . 16
6.4 Form Extension . 16
6.5 Routing Extension . 16
6.6 Translation Extension . 17
6.7 Security Extension . 18

6.7.1 Complex Access Controls with Expressions . 18
6.7.2 Using CSRF Protection in the Login Form . 18

6.8 Enabling custom Extensions . 18
6.9 Creating a SmartyBundle Extension . 19

i

7 Assetic 21
7.1 Installation . 21
7.2 Usage . 21
7.3 Combining Assets . 22
7.4 Block attributes . 22
7.5 Full example . 23
7.6 Symfony/Assetic documentation . 23

8 Forms 25
8.1 Rendering a Form . 25

9 Twitter Bootstrap integration 27
9.1 Installation . 27

9.1.1 Composer (Symfony 2.1.x) . 27
9.1.2 Enable the bundles . 29
9.1.3 Enable the Smarty template engine . 29

9.2 Configuration . 30

10 Configuration Reference 31
10.1 Available options . 32

11 Contributing 37
11.1 Submitting bugs and feature requests . 37
11.2 Coding Standards . 37

11.2.1 Structure . 39
11.3 Authors . 39

12 Introduction 41

13 Installation 43

14 Basic Usage / Tips & Tricks 45

15 SmartyBundle Extensions 47

16 Major components: Assetic, Forms and Twitter-Bootstrap 49

17 Configuration Reference 51

18 Contributing to SmartyBundle: coding standards and API 53
18.1 API . 53

19 License 55

20 Credits 57
20.1 Code . 57
20.2 Documentation . 57

21 Indices and tables 59

ii

SmartyBundle Documentation, Release 1.3.1

Note: A Symfony2 bundle that provides integration for the Smarty3 template engine.

Contents 1

http://symfony.com/
http://www.smarty.net/
http://symfony.com
http://smarty.net

SmartyBundle Documentation, Release 1.3.1

2 Contents

CHAPTER 1

Introduction

This bundle was created to support Smarty in Symfony2, providing an alternative to the Twig template engine natively
supported.

Note: An effort was made to provide, where possible, the same user configuration and extensions available for the
Twig bundle. This is to allow easy switching between the two bundles (at least I hope so!).

1.1 What is Smarty?

Smarty is a template engine for PHP, facilitating the separation of presentation (HTML/CSS) from application logic.
This implies that PHP code is application logic, and is separated from the presentation.

Some of Smarty’s features:1

• It is extremely fast.

• It is efficient since the PHP parser does the dirty work.

• No template parsing overhead, only compiles once.

• It is smart about recompiling only the template files that have changed.

• You can easily create your own custom functions and variable modifiers, so the template language is extremely
extensible.

• Configurable template {delimiter} tag syntax, so you can use {$foo}, {{$foo}}, <!
--{$foo}-->, etc.

• The {if}..{elseif}..{else}..{/if} constructs are passed to the PHP parser, so the {if...} ex-
pression syntax can be as simple or as complex an evaluation as you like.

• Allows unlimited nesting of sections, if’s etc.

1 http://www.smarty.net/docs/en/what.is.smarty.tpl

3

http://www.smarty.net/
http://twig.sensiolabs.org/
http://www.smarty.net/docs/en/what.is.smarty.tpl

SmartyBundle Documentation, Release 1.3.1

• Built-in caching support.

• Arbitrary template sources.

• Template Inheritance for easy management of template content.

• Plugin architecture.

See the Smarty3 Manual for other features and information on it’s syntax, configuration and installation.

1.2 Requirements

• PHP 5.5.0 and up

• Symfony 2.8 and up

• Smarty 3

1.3 License

This bundle is licensed under the LGPL-3 License. See the LICENSE file for details.

4 Chapter 1. Introduction

http://www.smarty.net/docs/en/
http://php.net
http://www.symfony.com
http://www.smarty.net
https://github.com/noiselabs/SmartyBundle/blob/master/Resources/meta/LICENSE

CHAPTER 2

Installation

2.1 Download SmartyBundle

Tell composer to add the bundle to your composer.json by running the command:

$ php composer.phar require noiselabs/smarty-bundle ~2.0

Composer will install the bundle to your project’s vendor/noiselabs directory.

2.2 Enable the bundle

Enable the bundle in the kernel:

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
// ...
new NoiseLabs\Bundle\SmartyBundle\SmartyBundle(),

);
}

2.3 Enable the Smarty template engine in the config

app/config/config.yml
...
framework:

templating:
engines: ['twig', 'php', 'smarty']

5

SmartyBundle Documentation, Release 1.3.1

Warning: You need to enable the php engine as well. Otherwise some services will not work as expected. See
‘https://github.com/symfony/symfony/issues/14719‘_

6 Chapter 2. Installation

CHAPTER 3

Usage

3.1 Basic usage

You can render a Smarty template instead of a Twig one simply by using the .smarty extension in the template name
instead of .twig. The controller below renders the index.html.smarty template:

// src/AppBundle/Controller/DefaultController.php

public function indexAction(Request $request)
{

return $this->render('default/index.html.smarty');
}

3.2 Template Inheritance

Like Symfony2 PHP renderer or Twig, Smarty provides template inheritance.

Note: Template inheritance is an approach to managing templates that resembles object-oriented programming tech-
niques. Instead of the traditional use of {include ...} tags to manage parts of templates, you can inherit the
contents of one template to another (like extending a class) and change blocks of content therein (like overriding
methods of a class.) This keeps template management minimal and efficient, since each template only contains the
differences from the template it extends.

Let’s assume you have a app/Resources/views/base.html.smarty as layout

<!DOCTYPE html>
<html>
<head>

<meta charset="UTF-8" />
<title>{block name=title}Welcome!{/block}</title>

(continues on next page)

7

SmartyBundle Documentation, Release 1.3.1

(continued from previous page)

{block name=stylesheets}{/block}
</head>
<body>
{block name=body}{/block}
{block name=javascripts}{/block}
</body>
</html>

and app/Resources/views/default/index.html.smarty for the content

{extends 'file:base.html.smarty'}
{block name=title}Welcome to the SmartyBundle{/block}
{block name=body}Welcome to the SmartyBundle{/block}

Then the output of index.html.smarty will be:

<!DOCTYPE html>
<html>
<head>

<meta charset="UTF-8" />
<title>Welcome to the SmartyBundle</title>

</head>
<body>
Welcome to the SmartyBundle
</body>
</html>

3.3 Referencing Templates

There are several possibilites to reference templates:

1. file:base.html.smarty: To load a template that lives in the app/Resources/views directory of
the project you should use the following syntax:

{extends 'file:base.html.smarty'}

2. file:AppBundle::index.html.smarty: This syntax is the same as with twig.

{extends 'file:AppBundle::base.html.smarty'}

3. file:[AppBundle]/base.html.smarty: Instead of the colon (:) separated syntax you can use smarty
native syntax which should be, performance wise, slightly better/faster. But it works only within templates (not
in the Controller), so for consistency’s sake you might want to prefer the colon separated syntax one.

{extends 'file:[AppBundle]/base.html.smarty'}

Please see Symfony2 - Template Naming and Locations to learn more about the naming scheme and template locations
supported in Symfony2.

{include} functions work the same way as the examples above.:

{include 'file:AppBundle::base.html.smarty'}
{include 'file:[AppBundle]/base.html.smarty'}
{include 'file:base.html.smarty'}

8 Chapter 3. Usage

http://symfony.com/doc/3.0/book/templating.html#template-naming-locations

SmartyBundle Documentation, Release 1.3.1

Warning: Note the usage of the file: resource in the {extends} function. We need to declare the resource
even if the Smarty class variable $default_resource_type is set to 'file'. This is required because we
need to trigger a function to handle ‘logical’ file names (only mandatory if you are using the first syntax). Learn
more about resources in the Smarty Resources webpage.

Note: The .html.smarty extension can simply be replaced by .smarty. We are prefixing with .html to stick
with the Symfony convention of defining the format (.html) and engine (.smarty) for each template.

3.3. Referencing Templates 9

http://www.smarty.net/docs/en/resources.tpl

SmartyBundle Documentation, Release 1.3.1

10 Chapter 3. Usage

CHAPTER 4

Cookbook

4.1 Injecting variables into all templates (i.e. Global Variables)

As exemplified in the Symfony Cookbook it is possible to make a variable to be accessible to all the templates you use
by configuring your app/config/config.yml file:

app/config/config.yml
smarty:

...
globals:

ga_tracking: UA-xxxxx-x

Now, the variable ga_tracking is available in all Smarty templates:

<p>Our google tracking code is: {$ga_tracking} </p>

4.2 Trim unnecessary whitespace from HTML markup

This technique can speed up your website by eliminating extra whitespace characters and thus reducing page size. It
removes HTML comments (except ConditionalComments) and reduces multiple whitespace to a single space every-
where but <script>, <pre>, <textarea>1.

To enable this feature add the trimwhitespace output filter in app/config/config.yml:

app/config/config.yml

Smarty configuration
smarty:

options:

(continues on next page)

1 http://stackoverflow.com/a/9207456/545442

11

http://symfony.com/doc/current/cookbook/templating/global_variables.html
http://stackoverflow.com/a/9207456/545442

SmartyBundle Documentation, Release 1.3.1

(continued from previous page)

autoload_filters:
output: [trimwhitespace]

12 Chapter 4. Cookbook

CHAPTER 5

Commands

SmartyBundle extends the default Symfony2 command line interface by providing the commands described below.

5.1 Compile Command

smarty:compile

Compiles all known Smarty templates.

5.1.1 Usage

The following command finds all known Smarty templates and compiles them:

php app/console smarty:compile

Alternatively you may pass an optional @AcmeMyBundle argument to only search for templates in a specific bundle:

php app/console smarty:compile @AcmeMyBundle

5.1.2 Available Options

• --force - Force the compilation of all templates even if they weren’t modified.

• --verbose - Print information about each template being currently compiled.

13

SmartyBundle Documentation, Release 1.3.1

14 Chapter 5. Commands

CHAPTER 6

Extensions

SmartyBundle extensions are packages that add new features to Smarty. The extension architecture implemented in the
SmartyBundle is an object-oriented approach to the plugin system available in Smarty. The implemented architecture
was inspired by Twig Extensions.

Each extension object share a common interest (translation, routing, etc.) and provide methods that will be registered
as a Smarty plugin before rendering a template. To learn about the plugin ecosystem in Smarty take a look at the
Smarty documentation page on that subject.

The SmartyBundle comes with a few extensions to help you right away. These are described in the next section.

6.1 Actions Extension

This extension tries to provide the same funcionality described in Symfony - Templating - Embedding Controllers.

Following the example presented in the link above, the Smarty equivalents are:

Using a block function:

{render attributes=['min'=>1,'max'=>3]}AcmeArticleBundle:Article:recentArticles{/
→˓render}

Using a modifier:

{'AcmeArticleBundle:Article:recentArticles'|render:['min'=>1,'max'=>3]}

6.2 Assetic Extension

See chapter Assetic for complete documentation about Assetic support in SmartyBundle.

15

http://www.smarty.net/docs/en/plugins.smarty
http://twig.sensiolabs.org/doc/extensions.html
http://www.smarty.net/docs/en/plugins.smarty
http://symfony.com/doc/current/book/templating.html#embedding-controllers

SmartyBundle Documentation, Release 1.3.1

6.3 Assets Extension

Templates commonly refer to images, JavaScript, stylesheets and other assets. You could hard-code the path to these
assets (e.g. /images/logo.png), but SmartyBundle provides a more dynamic option via the asset modifier:

or asset block:

<link href="{asset}css/blog.css{/asset}" rel="stylesheet" type="text/css" />

This bundle also provides the assets_version function to return the version of the assets in a package. To set the
version see the assets_version configuration option in Symfony’s Framework Bundle.

Usage in template context:

{assets_version}

6.4 Form Extension

Form extension provides support for Symfony Forms and it is described in its own chapter. Go there now.

6.5 Routing Extension

To generate URLs from a Smarty template you may use two block functions (path and url) provided by the
RoutingExtension.

path block:

Read this blog post.

path modifier:

 'my-blog-post']}">
Read this blog post.

Absolute URLs can also be generated.

url block:

Read this blog post.

url modifier:

 'my-blog-post']}">
Read this blog post.

Please see the Symfony - Routing for full information about routing features and options in Symfony.

16 Chapter 6. Extensions

http://symfony.com/doc/current/reference/configuration/framework.html#ref-framework-assets-version
http://symfony.com/doc/current/book/forms.html
https://github.com/noiselabs/SmartyBundle/tree/master/Extension/RoutingExtension.php
http://symfony.com/doc/current/book/routing.html

SmartyBundle Documentation, Release 1.3.1

6.6 Translation Extension

To help with message translation of static blocks of text in template context, the SmartyBundle, provides a translation
extension. This extension is implemented in the class TranslationExtension.

You may translate a message, in a template, using a block or modifier. Both methods support the following arguments:

count In pluralization context, used to determine which translation to use and also to populate the %count% place-
holder (only available in transchoice);

vars Message placeholders;

domain Message domain, an optional way to organize messages into groups;

locale The locale that the translations are for (e.g. en_GB, en, etc);

trans block:

{trans}Hello World!{/trans}

{trans vars=['%name%' => 'World']}Hello %name%{/trans}

{trans domain="messages" locale="pt_PT"}Hello World!{/trans}

<!-- In case you're curious, the latter returns "Olá Mundo!" :) -->

trans modifier:

{"Hello World!"|trans}

{"Hello %name%"|trans:['%name%' => 'World']}

{"Hello World!"|trans:[]:"messages":"pt_PT"}

Message pluralization can be achieved using transchoice:

Warning: Unlike the examples given in the Symfony documentation, which uses curly brackets for explicit
interval pluralization we are using square brackets due to Smarty usage of curly brackets as syntax delimiters. So
{0} There is no apples becomes [0] There is no apples.

transchoice block:

{transchoice count=$count}[0] There is no apples|[1] There is one apple|]1,Inf] There
→˓is %count% apples{/transchoice}

transchoice modifier:

{'[0] There is no apples|[1] There is one apple|]1,Inf] There is %count% apples
→˓'|transchoice:$count}
<!-- Should write: "There is 5 apples" -->

The transchoice block/modifier automatically gets the %count% variable from the current context and passes it to the
translator. This mechanism only works when you use a placeholder following the %var% pattern.

6.6. Translation Extension 17

https://github.com/noiselabs/SmartyBundle/tree/master/Extension/TranslationExtension.php
http://symfony.com/doc/current/book/translation.html#message-placeholders
http://symfony.com/doc/current/book/translation.html#pluralization
http://symfony.com/doc/current/book/translation.html#explicit-interval-pluralization

SmartyBundle Documentation, Release 1.3.1

6.7 Security Extension

This extension provides access control inside a Smarty template. This part of the security process is called authoriza-
tion, and it means that the system is checking to see if you have privileges to perform a certain action. For full details
about the Symfony security system check it’s documentation page.

If you want to check if the current user has a role inside a template, use the built-in is_granted modifier.

Usage:

{if 'IS_AUTHENTICATED_FULLY'|is_granted:$object:$field}
Delete

{else}
<!-- no delete for you -->

{/if}

Note: If you use this function and are not at a URL behind a firewall active, an exception will be thrown. Again, it’s
almost always a good idea to have a main firewall that covers all URLs.

6.7.1 Complex Access Controls with Expressions

Note: The expression functionality was introduced in Symfony 2.4.

In addition to a role like ROLE_ADMIN, the isGranted method also accepts an Expression object.

You can use expressions inside your templates like this:

{if '"ROLE_ADMIN" in roles or (user and user.isSuperAdmin())'|expression|is_granted}
Delete

{/if}

In this example, if the current user has ROLE_ADMIN or if the current user object’s isSuperAdmin() method
returns true, then access will be granted (note: your User object may not have an isSuperAdmin method, that
method is invented for this example).

For more details on expressions and security, see the section Complex Access Controls with Expressions in the Sym-
fony book.

6.7.2 Using CSRF Protection in the Login Form

The security extension also adds a modifer to support CSRF Protection in login forms. Please read Using CSRF
Protection in the Login Form from the Symfony Documentation for general CSRF Protection setup. The template for
rendering should look like this:

<input type="hidden" name="_csrf_token" value="{'authenticate'|csrf_token}">

6.8 Enabling custom Extensions

To enable a Smarty extension, add it as a regular service in one of your configuration, and tag it with smarty.
extension. The creation of the extension itself is described in the next section.

18 Chapter 6. Extensions

http://symfony.com/doc/current/book/security.html
http://symfony.com/doc/current/book/security.html
https://github.com/symfony/symfony/blob/master/src/Symfony/Component/ExpressionLanguage/Expression.php
http://symfony.com/doc/current/book/security.html#book-security-expressions
http://symfony.com/doc/current/cookbook/security/csrf_in_login_form.html
http://symfony.com/doc/current/cookbook/security/csrf_in_login_form.html

SmartyBundle Documentation, Release 1.3.1

• YAML

services:
smarty.extension.your_extension_name:

class: Fully\Qualified\Extension\Class\Name
arguments: [@service]
tags:

- { name: smarty.extension }

6.9 Creating a SmartyBundle Extension

Note: In version 0.1.0 class AbstractExtension was simply named Extension. Please update your code when migrating
to 0.2.0.

An extension is a class that implements the ExtensionInterface. To make your life easier an abstract AbstractExtension
class is provided, so you can inherit from it instead of implementing the interface. That way, you just need to implement
the getName() method as the Extension class provides empty implementations for all other methods.

The getName() method must return a unique identifier for your extension:

namespace NoiseLabs\Bundle\SmartyBundle\Extension;

class TranslationExtension extends AbstractExtension
{

public function getName()
{

return 'translator';
}

}

Plugins

Plugins can be registered in an extension via the getPlugins() method. Each element in the array returned by
getPlugins() must implement PluginInterface.

For each Plugin object three parameters are required. The plugin name comes in the first parameter and should be
unique for each plugin type. Second parameter is an object of type ExtensionInterface and third parameter is
the name of the method in the extension object used to perform the plugin action.

Please check available method parameters and plugin types in the Extending Smarty With Plugins webpage.

namespace NoiseLabs\Bundle\SmartyBundle\Extension;

use NoiseLabs\Bundle\SmartyBundle\Extension\Plugin\BlockPlugin;

class TranslationExtension extends Extension
{

public function getPlugins()
{

return array(
new BlockPlugin('trans', $this, 'blockTrans'),

);
}

public function blockTrans(array $params = array(), $message = null, $template, &
→˓$repeat) (continues on next page)

6.9. Creating a SmartyBundle Extension 19

https://github.com/noiselabs/SmartyBundle/tree/master/Extension/ExtensionInterface.php
https://github.com/noiselabs/SmartyBundle/tree/master/Extension/AbstractExtension.php
https://github.com/noiselabs/SmartyBundle/tree/master/Extension/Plugin/PluginInterface.php
http://www.smarty.net/docs/en/plugins.smarty

SmartyBundle Documentation, Release 1.3.1

(continued from previous page)

{
$params = array_merge(array(

'arguments' => array(),
'domain' => 'messages',
'locale' => null,

), $params);

return $this->translator->trans($message, $params['arguments'], $params[
→˓'domain'], $params['locale']);

}
}

Filters

Filters can be registered in an extension via the getFilters() method.

Each element in the array returned by getFilters() must implement FilterInterface.

namespace NoiseLabs\Bundle\SmartyBundle\Extension;

use NoiseLabs\Bundle\SmartyBundle\Extension\Filter\PreFilter;

class BeautifyExtension extends Extension
{

public function getFilters()
{

return array(
new PreFilter($this, 'htmlTagsTolower'),

);
}

// Convert html tags to be lowercase
public function htmlTagsTolower($source, \Smarty_Internal_Template $template)
{

return preg_replace('!<(\w+)[^>]+>!e', 'strtolower("$1")', $source);
}

}

Globals

Global variables can be registered in an extension via the getGlobals() method.

There are no restrictions about the type of the array elements returned by getGlobals().

namespace NoiseLabs\Bundle\SmartyBundle\Extension;

class GoogleExtension extends Extension
{

public function getGlobals()
{

return array(
'ga_tracking' => 'UA-xxxxx-x'

);
}

}

20 Chapter 6. Extensions

https://github.com/noiselabs/SmartyBundle/tree/master/Extension/Filter/FilterInterface.php

CHAPTER 7

Assetic

Hint: Assetic is an asset management framework for PHP. This extensions provides support for it’s usage in Sym-
fony2 when using Smarty templates.

Assetic combines two major ideas: assets and filters. The assets are files such as CSS, JavaScript and image files.
The filters are things that can be applied to these files before they are served to the browser. This allows a separation
between the asset files stored in the application and the files actually presented to the user.

7.1 Installation

See the Symfony Manual for Installation Instructions.

When installing symfony/assetic-bundle you need to enable the twig template engine. Otherwise you will get a
ServiceNotFoundException.

app/config/config.yml
...
framework:

templating:
engines: ['twig', 'smarty']

Also make sure you disable assetic controllers.

7.2 Usage

Using Assetic provides many advantages over directly serving the files. The files do not need to be stored where they
are served from and can be drawn from various sources such as from within a bundle:

21

https://github.com/kriswallsmith/assetic
https://symfony.com/doc/current/cookbook/assetic/asset_management.html#installing-and-enabling-assetic

SmartyBundle Documentation, Release 1.3.1

{javascripts
assets='@AcmeFooBundle/Resources/public/js/*'

}
<script type="text/javascript" src="{$asset_url}"></script>
{/javascripts}

To bring in CSS stylesheets, you can use the same methodologies seen in this entry, except with the stylesheets tag:

{stylesheets
assets='@AcmeFooBundle/Resources/public/css/*'

}
<link rel="stylesheet" href="{$asset_url}" />
{/stylesheets}

7.3 Combining Assets

You can also combine several files into one. This helps to reduce the number of HTTP requests, which is great for front
end performance. It also allows you to maintain the files more easily by splitting them into manageable parts. This can
help with re-usability as you can easily split project-specific files from those which can be used in other applications,
but still serve them as a single file:

{javascripts
assets='@AcmeFooBundle/Resources/public/js/*,

@AcmeBarBundle/Resources/public/js/form.js,
@AcmeBarBundle/Resources/public/js/calendar.js'

}
<script src="{$asset_url}"></script>
{/javascripts}

In the dev environment, each file is still served individually, so that you can debug problems more easily. However, in
the prod environment, this will be rendered as a single script tag.

7.4 Block attributes

Here is a list of the possible attributes to define in the block function.

• assets: A comma-separated list of files to include in the build (CSS, JS or image files)

• debug: If set to true, the plugin will not combine your assets to allow easier debug

• filter: A coma-separated list of filters to apply. Currently, only LESS and YuiCompressor (both CSS and
JS) are supported

• combine: Combine all of your CSS and JS files (overrides debug)

• output: Defines the URLs that Assetic produces

• var_name: The variable name that will be used to pass the asset URL to the <link> tag

• as: An alias to var_name. Example: as='js_url'

• vars: Array of asset variables. For a description of this recently added feature please check out the Johannes
Schmitt blog post about Asset Variables in Assetic.

22 Chapter 7. Assetic

http://web.archive.org/web/20140625062020/http://jmsyst.com/blog/asset-variables-in-assetic
http://web.archive.org/web/20140625062020/http://jmsyst.com/blog/asset-variables-in-assetic

SmartyBundle Documentation, Release 1.3.1

Warning: Unlike the examples given in the Asset Variables in Assetic, which uses curly brackets for the vars
placeholder we are using square brackets due to Smarty usage of curly brackets as syntax delimiters. So js/
messages.{locale}.js becomes js/messages.[locale].js.

7.5 Full example

Example using all available attributes:

{javascripts
assets='@AcmeFooBundle/Resources/public/js/*,

@AcmeBarBundle/Resources/public/js/form.js,
@AcmeBarBundle/Resources/public/js/calendar.js',
@AcmeBarBundle/Resources/public/js/messages.[locale].js

filter='yui_js'
output='js/compiled/main.js'
var_name='js_url'
vars=['locale']

}
<script src="{$js_url}"></script>
{/javascripts}

7.6 Symfony/Assetic documentation

For further details please refer to the Symfony documentation pages about Assetic:

• How to Use Assetic for Asset Management

• How to Minify JavaScripts and Stylesheets with YUI Compressor

7.5. Full example 23

http://web.archive.org/web/20140625062020/http://jmsyst.com/blog/asset-variables-in-assetic
http://symfony.com/doc/current/cookbook/assetic/asset_management.html
http://symfony.com/doc/current/cookbook/assetic/yuicompressor.html

SmartyBundle Documentation, Release 1.3.1

24 Chapter 7. Assetic

CHAPTER 8

Forms

Symfony integrates a Form component that makes dealing with forms easy. In this chapter, you’ll see how to render
Symfony forms in Smarty templates. Oh yeah!

Warning: Form support in SmartyBundle is currently under development and it is expected to be broken here
and there. Please be patient and don’t be shy to share your experiences with this extension. It will help us improve
it. Thanks!

8.1 Rendering a Form

First you need to create a form instance as described in Creating a Simple Form.

// src/Acme/TaskBundle/Controller/DefaultController.php
namespace Acme\TaskBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Acme\TaskBundle\Entity\Task;
use Symfony\Component\HttpFoundation\Request;

class DefaultController extends Controller
{

public function newAction(Request $request)
{

// create a task and give it some dummy data for this example
$task = new Task();
$task->setTask('Write a blog post');
$task->setDueDate(new \DateTime('tomorrow'));

$form = $this->createFormBuilder($task)
->add('task', 'text')
->add('dueDate', 'date')

(continues on next page)

25

http://symfony.com/doc/current/book/forms.html#creating-a-simple-form

SmartyBundle Documentation, Release 1.3.1

(continued from previous page)

->getForm();

return $this->render('AcmeTaskBundle:Default:new.html.smarty', array(
'form' => $form->createView(),

));
}

}

Once you create a form instance, the next step is to render it. This is done by passing a special form “view” object to
your template (notice the $form->createView() in the controller above) and using a set of form helper functions:

{* src/Acme/TaskBundle/Resources/views/Default/new.html.smarty *}
<form action="{'task_new'|path}" method="post" {form_enctype form=$form}>

{form_widget form=$form}

<input type="submit" />
</form>

More examples coming soon. . .

26 Chapter 8. Forms

CHAPTER 9

Twitter Bootstrap integration

Twitter Bootstrap is an extensive front-end toolkit for developing web sites and applications released by Twitter devel-
opers.

MopaBootstrapBundle is a Symfony2 Bundle that integrates Bootstrap into Symfony2 project.

SmartyBundle builds upon these tools to give you a quick way to start a project using Symfony2 + TwitterBootstrap
+ Smarty3. Enjoy!

Note: Examples presented here use only the most common/preferred tool for a given task. For complete reference
please check MopaBootstrapBundle documentation.

9.1 Installation

9.1.1 Composer (Symfony 2.1.x)

Add the following packages and scripts to composer.json:

{
"require": {

"php": ">=5.3.8",

"symfony/framework-standard-edition": "dev-master",

"noiselabs/smarty-bundle": "dev-twitter-bootstrap",

"mopa/bootstrap-bundle": "dev-master",
"twitter/bootstrap": "master",
"knplabs/knp-paginator-bundle": "dev-master",
"knplabs/knp-menu-bundle": "dev-master",
"craue/formflow-bundle": "dev-master",

(continues on next page)

27

http://twitter.github.com/bootstrap/
https://github.com/phiamo/MopaBootstrapBundle
https://github.com/phiamo/MopaBootstrapBundle/blob/master/Resources/doc/index.md

SmartyBundle Documentation, Release 1.3.1

(continued from previous page)

"thomas-mcdonald/bootstrap-sass": "dev-master",
"mopa/bootstrap-sandbox-bundle": "dev-master",
"liip/theme-bundle": "dev-master"

},

"scripts": {
"post-install-cmd": [

→˓"Sensio\\Bundle\\DistributionBundle\\Composer\\ScriptHandler::buildBootstrap",
"Sensio\\Bundle\\DistributionBundle\\Composer\\ScriptHandler::clearCache",

→˓"Sensio\\Bundle\\DistributionBundle\\Composer\\ScriptHandler::installAssets",

→˓"Sensio\\Bundle\\DistributionBundle\\Composer\\ScriptHandler::installRequirementsFile
→˓",

→˓"Mopa\\Bundle\\BootstrapBundle\\Composer\\ScriptHandler::postInstallSymlinkTwitterBootstrap
→˓",

→˓"Mopa\\Bundle\\BootstrapBundle\\Composer\\ScriptHandler::postInstallSymlinkTwitterBootstrapSass
→˓"

],
"post-update-cmd": [

→˓"Sensio\\Bundle\\DistributionBundle\\Composer\\ScriptHandler::buildBootstrap",
"Sensio\\Bundle\\DistributionBundle\\Composer\\ScriptHandler::clearCache",

→˓"Sensio\\Bundle\\DistributionBundle\\Composer\\ScriptHandler::installAssets",

→˓"Sensio\\Bundle\\DistributionBundle\\Composer\\ScriptHandler::installRequirementsFile
→˓",

→˓"Mopa\\Bundle\\BootstrapBundle\\Composer\\ScriptHandler::postInstallSymlinkTwitterBootstrap
→˓",

→˓"Mopa\\Bundle\\BootstrapBundle\\Composer\\ScriptHandler::postInstallSymlinkTwitterBootstrapSass
→˓"

]
},

"include-path": ["vendor/smarty/smarty/distribution/libs/"],

"repositories": [
{

"type": "package",
"package": {

"version": "master",
"name": "twitter/bootstrap",
"source": {

"url": "https://github.com/twitter/bootstrap.git",
"type": "git",
"reference": "master"

},
"dist": {

"url": "https://github.com/twitter/bootstrap/zipball/master",
"type": "zip"

}
(continues on next page)

28 Chapter 9. Twitter Bootstrap integration

SmartyBundle Documentation, Release 1.3.1

(continued from previous page)

}
},
{

"type":"package",
"package": {

"version":"dev-master",
"name":"thomas-mcdonald/bootstrap-sass",
"source": {

"url":"https://github.com/thomas-mcdonald/bootstrap-sass.git",
"type":"git",
"reference":"master"

},
"dist": {

"url":"https://github.com/thomas-mcdonald/bootstrap-sass/zipball/
→˓master",

"type":"zip"
}

}
}

]
}

Now tell composer to update vendors by running the command:

$ php composer.phar update

9.1.2 Enable the bundles

// app/AppKernel.php

class AppKernel extends Kernel
{

public function registerBundles()
{

$bundles = array(
// ...
new NoiseLabs\Bundle\SmartyBundle\SmartyBundle(),

new Mopa\Bundle\BootstrapBundle\MopaBootstrapBundle(),
new Mopa\Bundle\BootstrapSandboxBundle\MopaBootstrapSandboxBundle()
new Knp\Bundle\MenuBundle\KnpMenuBundle(),
new Knp\Bundle\PaginatorBundle\KnpPaginatorBundle(),
new Liip\ThemeBundle\LiipThemeBundle()

);

// ...

return $bundles;
}

}

9.1.3 Enable the Smarty template engine

• YAML

9.1. Installation 29

SmartyBundle Documentation, Release 1.3.1

app/config/config.yml

framework:
templating: { engines: ['twig', 'smarty'] }

9.2 Configuration

• YAML

app/config/config.yml

MopaBootstrap Configuration
#
mopa_bootstrap:

To load the navbar extensions (template helper, CompilerPass, etc.)
navbar: ~

30 Chapter 9. Twitter Bootstrap integration

CHAPTER 10

Configuration Reference

The example below uses YAML format. Please adapt the example if using XML or PHP.

app/config/config.yml:

smarty:

options:

See http://www.smarty.net/docs/en/api.variables.tpl
allow_php_templates:
allow_php_templates:
auto_literal:
autoload_filters:
cache_dir: %kernel.cache_dir%/smarty/cache
cache_id:
cache_lifetime:
cache_locking:
cache_modified_check:
caching:
caching_type:
compile_check:
compile_dir: %kernel.cache_dir%/smarty/templates_c
compile_id:
compile_locking:
compiler_class:
config_booleanize:
config_dir: %kernel.root_dir%/config/smarty
config_overwrite:
config_read_hidden:
debug_tpl:
debugging:
debugging_ctrl:
default_config_type:
default_modifiers:
default_resource_type: file

(continues on next page)

31

SmartyBundle Documentation, Release 1.3.1

(continued from previous page)

default_config_handler_func:
default_template_handler_func:
direct_access_security:
error_reporting:
escape_html:
force_cache:
force_compile:
inheritance_merge_compiled_includes: true
left_delimiter:
locking_timeout:
merge_compiled_includes:
php_handling:
plugins_dir: []
right_delimiter:
smarty_debug_id:
template_dir: %kernel.root_dir%/Resources/views
trim_whitespace : false
trusted_dir:
use_include_path: false
use_sub_dirs: true

globals:

Examples:
foo: "@bar"
pi: 3.14

10.1 Available options

allow_php_templates By default the PHP template file resource is disabled. Setting $allow_php_templates to TRUE
will enable PHP template files.

auto_literal The Smarty delimiter tags { and } will be ignored so long as they are surrounded by white space. This
behavior can be disabled by setting auto_literal to false.

autoload_filters If there are some filters that you wish to load on every template invocation, you can specify them
using this variable and Smarty will automatically load them for you. The variable is an associative array where
keys are filter types and values are arrays of the filter names.

cache_dir This is the name of the directory where template caches are stored. By default this is %kernel.
cache_dir%/smarty/cache. This directory must be writeable by the web server.

cache_id Persistent cache_id identifier. As an alternative to passing the same $cache_id to each and every function
call, you can set this $cache_id and it will be used implicitly thereafter. With a $cache_id you can have
multiple cache files for a single call to display() or fetch() depending for example from different content
of the same template.

cache_lifetime This is the length of time in seconds that a template cache is valid. Once this time has expired, the
cache will be regenerated. See the page Smarty Class Variables - $cache_lifetime for more details.

cache_locking Cache locking avoids concurrent cache generation. This means resource intensive pages can be gen-
erated only once, even if they’ve been requested multiple times in the same moment. Cache locking is disabled
by default.

cache_modified_check If set to TRUE, Smarty will respect the If-Modified-Since header sent from the client. If the
cached file timestamp has not changed since the last visit, then a ‘304: Not Modified’ header will be sent instead

32 Chapter 10. Configuration Reference

http://www.smarty.net/docs/en/variable.cache.lifetime.tpl

SmartyBundle Documentation, Release 1.3.1

of the content. This works only on cached content without {insert} tags.

caching This tells Smarty whether or not to cache the output of the templates to the $cache_dir. By default this
is set to the constant Smarty::CACHING_OFF. If your templates consistently generate the same content, it is
advisable to turn on $caching, as this may result in significant performance gains.

caching_type This property specifies the name of the caching handler to use. It defaults to file, enabling the internal
filesystem based cache handler.

compile_check Upon each invocation of the PHP application, Smarty tests to see if the current template has changed
(different timestamp) since the last time it was compiled. If it has changed, it recompiles that template. If the
template has yet not been compiled at all, it will compile regardless of this setting. By default this variable is
set to TRUE. Once an application is put into production (ie the templates won’t be changing), the compile check
step is no longer needed. Be sure to set $compile_check to FALSE for maximum performance. Note that if you
change this to FALSE and a template file is changed, you will not see the change since the template will not
get recompiled. If $caching is enabled and $compile_check is enabled, then the cache files will get regenerated
if an involved template file or config file was updated. As of Smarty 3.1 $compile_check can be set to the
value Smarty::COMPILECHECK_CACHEMISS. This enables Smarty to revalidate the compiled template,
once a cache file is regenerated. So if there was a cached template, but it’s expired, Smarty will run a single
compile_check before regenerating the cache.

compile_dir This is the name of the directory where compiled templates are located. By default this is %kernel.
cache_dir%/smarty/templates_c. This directory must be writeable by the web server.

compile_id Persistant compile identifier. As an alternative to passing the same $compile_id to each and
every function call, you can set this $compile_id and it will be used implicitly thereafter. With a
$compile_id you can work around the limitation that you cannot use the same $compile_dir for dif-
ferent $template_dirs. If you set a distinct $compile_id for each $template_dir then Smarty can
tell the compiled templates apart by their $compile_id. If you have for example a prefilter that localizes
your templates (that is: translates language dependend parts) at compile time, then you could use the current
language as $compile_id and you will get a set of compiled templates for each language you use. Another
application would be to use the same compile directory across multiple domains / multiple virtual hosts.

compile_locking Compile locking avoids concurrent compilation of the same template. Compile locking is enabled
by default.

compiler_class Specifies the name of the compiler class that Smarty will use to compile the templates. The default is
‘Smarty_Compiler’. For advanced users only.

config_booleanize If set to TRUE, config files values of on/true/yes and off/false/no get converted to
boolean values automatically. This way you can use the values in the template like so: {if #foobar#}...
{/if}. If foobar was on, true or yes, the {if} statement will execute. Defaults to TRUE.

config_dir This is the directory used to store config files used in the templates. Default is %kernel.root_dir%/
config/smarty.

config_overwrite If set to TRUE, the default then variables read in from config files will overwrite each other. Oth-
erwise, the variables will be pushed onto an array. This is helpful if you want to store arrays of data in config
files, just list each element multiple times.

config_read_hidden If set to TRUE, hidden sections ie section names beginning with a period(.) in config files can be
read from templates. Typically you would leave this FALSE, that way you can store sensitive data in the config
files such as database parameters and not worry about the template loading them. FALSE by default.

debug_tpl This is the name of the template file used for the debugging console. By default, it is named debug.tpl
and is located in the SMARTY_DIR.

debugging This enables the debugging console. The console is a javascript popup window that informs you of the
included templates, variables assigned from php and config file variables for the current script. It does not show
variables assigned within a template with the {assign} function.

10.1. Available options 33

SmartyBundle Documentation, Release 1.3.1

debugging_ctrl This allows alternate ways to enable debugging. NONE means no alternate methods are allowed.
URL means when the keyword SMARTY_DEBUG is found in the QUERY_STRING, debugging is enabled for
that invocation of the script. If $debugging is TRUE, this value is ignored.

default_config_type This tells smarty what resource type to use for config files. The default value is file, mean-
ing that $smarty->configLoad('test.conf') and $smarty->configLoad('file:test.
conf') are identical in meaning.

default_modifiers This is an array of modifiers to implicitly apply to every variable in a template. For example, to
HTML-escape every variable by default, use array('escape:"htmlall"'). To make a variable exempt
from default modifiers, add the ‘nofilter’ attribute to the output tag such as {$var nofilter}.

default_resource_type This tells smarty what resource type to use implicitly. The default value is file, meaning that
{include 'index.tpl'} and {include 'file:index.tpl'} are identical in meaning.

default_config_handler_func This function is called when a config file cannot be obtained from its resource.

default_template_handler_func This function is called when a template cannot be obtained from its resource.

direct_access_security Direct access security inhibits direct browser access to compiled or cached template files.
Direct access security is enabled by default.

error_reporting When this value is set to a non-null-value it’s value is used as php’s error_reporting level inside of
display() and fetch().

escape_html Setting $escape_html to TRUE will escape all template variable output by wrapping it in
htmlspecialchars({$output}, ENT_QUOTES, SMARTY_RESOURCE_CHAR_SET);, which is the
same as {$variable|escape:"html"}. Template designers can choose to selectively disable this feature
by adding the nofilter flag: {$variable nofilter}. This is a compile time option. If you change the
setting you must make sure that the templates get recompiled.

force_cache This forces Smarty to (re)cache templates on every invocation. It does not override the $caching level,
but merely pretends the template has never been cached before.

force_compile This forces Smarty to (re)compile templates on every invocation. This setting overrides
$compile_check. By default this is FALSE. This is handy for development and debugging. It should
never be used in a production environment. If $caching is enabled, the cache file(s) will be regenerated every
time.

inheritance_merge_compiled_includes In Smarty 3.1 template inheritance is a compile time process. All the ex-
tending of {block} tags is done at compile time and the parent and child templates are compiled in a single
compiled template. {include} subtemplate could also {block} tags. Such subtemplate could not compiled
by it’s own because it could be used in other context where the {block} extended with a different result. For
that reason the compiled code of {include} subtemplates gets also merged in compiled inheritance template.

Merging the code into a single compile template has some drawbacks. 1. You could not use variable file names
in {include} Smarty would use the {include} of compilation time. 2. You could not use individual
compile_id in {include}. 3. Seperate caching of subtemplate was not possible. 4. Any change of the
template directory structure between calls was not necessarily seen.

Starting with 3.1.15 some of the above conditions got checked and resulted in an exception. It turned out that a
couple of users did use some of above and now got exceptions.

To resolve this starting with 3.1.16 there is a new configuration parameter
$inheritance_merge_compiled_includes. For most backward compatibility its default set-
ting is true. With this setting all {include} subtemplate will be merge into the compiled inheritance
template, but the above cases could be rejected by exception.

If $smarty->inheritance_merge_compiled_includes = false; {include} subtemplate
will not be merged. You must now manually merge all {include} subtemplate which do contain {block}
tags. This is done by setting the "inline" option. {include file='foo.bar' inline}

34 Chapter 10. Configuration Reference

SmartyBundle Documentation, Release 1.3.1

1. In case of a variable file name like {include file=$foo inline} you must you the variable in a compile_id
$smarty->compile_id = $foo;

2. If you use individual compile_id in {include file=’foo.tpl’ compile_id=$bar inline} it must be used in the
global compile_id as well $smarty->compile_id = $foo;

3. If call templates with different template_dir configurations and a parent could same named child template
from different folders you must make the folder name part of the compile_id.

In the upcomming major release Smarty 3.2 inheritance will no longer be a compile time process. All restrictions
will be then removed.

left_delimiter This is the left delimiter used by the template language. Default is {.

locking_timeout This is maximum time in seconds a cache lock is valid to avoid dead locks. The deafult value is 10
seconds.

merge_compiled_includes By setting $merge_compiled_includes to TRUE Smarty will merge the compiled
template code of subtemplates into the compiled code of the main template. This increases rendering speed of
templates using a many different sub-templates. Individual sub-templates can be merged by setting the inline
option flag within the {include} tag. $merge_compiled_includes does not have to be enabled for the
inline merge.

php_handling This tells Smarty how to handle PHP code embedded in the templates. There are four possible
settings, the default being Smarty::PHP_PASSTHRU. Note that this does NOT affect php code within
{php}{/php} tags in the template. Settings: Smarty::PHP_PASSTHRU - Smarty echos tags as-is;
Smarty::PHP_QUOTE - Smarty quotes the tags as html entities; Smarty::PHP_REMOVE - Smarty re-
moves the tags from the templates; Smarty::PHP_ALLOW - Smarty will execute the tags as PHP code.

plugins_dir This is the directory or directories where Smarty will look for the plugins that it needs. Default
is plugins/ under the SMARTY_DIR. If you supply a relative path, Smarty will first look under the
SMARTY_DIR, then relative to the current working directory, then relative to the PHP include_path. If
$plugins_dir is an array of directories, Smarty will search for your plugin in each plugin directory in
the order they are given. While using the SmartyBundle you may add plugins by setting services tagged
with smarty.extension. See section Extensions for more information.

right_delimiter This is the right delimiter used by the template language. Default is }.

smarty_debug_id The value of $smarty_debug_id defines the URL keyword to enable debugging at browser
level. The default value is SMARTY_DEBUG.

template_dir This is the name of the default template directory. If you do not supply a resource type when in-
cluding files, they will be found here. By default this is %kernel.root_dir%/Resources/views.
$template_dir can also be an array of directory paths: Smarty will traverse the directories and stop on
the first matching template found. Note that the SmartyEngine included in this bundle already add the
template directory of each registered Bundle.

trim_whitespace Trim unnecessary whitespace from HTML markup.

trusted_dir $trusted_dir is only for use when security is enabled. This is an array of all directories that are
considered trusted. Trusted directories are where you keep php scripts that are executed directly from the
templates with {include_php}.

use_include_path This tells smarty to respect the include_pathwithin the File Template Resource han-
dler and the plugin loader to resolve the directories known to $template_dir. The flag also makes the plugin
loader check the include_path for $plugins_dir.

use_sub_dirs Smarty will create subdirectories under the compiled templates and cache directories if $use_sub_dirs
is set to TRUE, default is FALSE. In an environment where there are potentially tens of thousands of files
created, this may help the filesystem speed. On the other hand, some environments do not allow PHP processes
to create directories, so this must be disabled which is the default. Sub directories are more efficient, so use them

10.1. Available options 35

SmartyBundle Documentation, Release 1.3.1

if you can. Theoretically you get much better perfomance on a filesystem with 10 directories each having 100
files, than with 1 directory having 1000 files. This was certainly the case with Solaris 7 (UFS). . . with newer
filesystems such as ext3 and especially reiserfs, the difference is almost nothing.

36 Chapter 10. Configuration Reference

CHAPTER 11

Contributing

11.1 Submitting bugs and feature requests

Bugs and feature requests are tracked on GitHub.

11.2 Coding Standards

When contributing to SmartyBundle you should follow the standards defined in the PSR-0, PSR-1 and PSR-2. docu-
ments.

Here’s a short example:

<?php
/**
* This file is part of NoiseLabs-SmartyBundle

*
* NoiseLabs-SmartyBundle is free software; you can redistribute it

* and/or modify it under the terms of the GNU Lesser General Public

* License as published by the Free Software Foundation; either

* version 3 of the License, or (at your option) any later version.

*
* NoiseLabs-SmartyBundle is distributed in the hope that it will be

* useful, but WITHOUT ANY WARRANTY; without even the implied warranty

* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* Lesser General Public License for more details.

*
* You should have received a copy of the GNU Lesser General Public

* License along with NoiseLabs-SmartyBundle; if not, see

* <http://www.gnu.org/licenses/>.

*
* Copyright (C) 2011-2013 Vítor Brandão

*
(continues on next page)

37

https://github.com/noiselabs/SmartyBundle/issues
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-1-basic-coding-standard.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md

SmartyBundle Documentation, Release 1.3.1

(continued from previous page)

* @category NoiseLabs

* @package SmartyBundle

* @author Vítor Brandão <vitor@noiselabs.org>

* @copyright (C) 2011-2013 Vítor Brandão <vitor@noiselabs.org>

* @license http://www.gnu.org/licenses/lgpl-3.0-standalone.html LGPL-3

* @link http://www.noiselabs.org

*/

namespace NoiseLabs\Bundle\SmartyBundle;

/**
* This class provides X.

*
* @author John Doe <john@example.com>

*/
class FooBar
{

const SOME_CONST = 42;

private $fooBar;

/**
* @param string $dummy Some argument description

*/
public function __construct($dummy)
{

$this->fooBar = $this->transformText($dummy);
}

/**
* @param string $dummy Some argument description

* @return string|null Transformed input

*/
private function transformText($dummy, $options = array())
{

$mergedOptions = array_merge($options, array(
'some_default' => 'values',

));

if (true === $dummy) {
return;

}
if ('string' === $dummy) {

if ('values' === $mergedOptions['some_default']) {
$dummy = substr($dummy, 0, 5);

} else {
$dummy = ucwords($dummy);

}
}

return $dummy;
}

}

38 Chapter 11. Contributing

SmartyBundle Documentation, Release 1.3.1

11.2.1 Structure

• Add a single space after each comma delimiter;

• Add a single space around operators (==, &&, . . .);

• Add a blank line before return statements, unless the return is alone inside a statement-group (like an if state-
ment);

• Use braces to indicate control structure body regardless of the number of statements it contains;

• Define one class per file - this does not apply to private helper classes that are not intended to be instantiated
from the outside and thus are not concerned by the PSR-0 standard;

• Declare class properties before methods;

• Declare public methods first, then protected ones and finally private ones.

Naming Conventions

• Use camelCase, not underscores, for variable, function and method names, arguments;

• Use underscores for option, parameter names;

• Use namespaces for all classes;

• Suffix interfaces with Interface;

• Use alphanumeric characters and underscores for file names;

Documentation

• Add PHPDoc blocks for all classes, methods, and functions;

• Omit the @return tag if the method does not return anything;

License

• SmartyBundle is released under the LGPL-3 license, and the license block has to be present at the top of every
PHP file, before the namespace.

11.3 Authors

Vítor Brandão - vitor@noiselabs.org ~ twitter.com/noiselabs ~ blog.noiselabs.org

See also the list of contributors who participated in this project.

11.3. Authors 39

mailto:vitor@noiselabs.org
http://twitter.com/noiselabs
http://blog.noiselabs.org
https://github.com/noiselabs/SmartyBundle/contributors

SmartyBundle Documentation, Release 1.3.1

40 Chapter 11. Contributing

CHAPTER 12

Introduction

41

SmartyBundle Documentation, Release 1.3.1

42 Chapter 12. Introduction

CHAPTER 13

Installation

43

SmartyBundle Documentation, Release 1.3.1

44 Chapter 13. Installation

CHAPTER 14

Basic Usage / Tips & Tricks

45

SmartyBundle Documentation, Release 1.3.1

46 Chapter 14. Basic Usage / Tips & Tricks

CHAPTER 15

SmartyBundle Extensions

47

SmartyBundle Documentation, Release 1.3.1

48 Chapter 15. SmartyBundle Extensions

CHAPTER 16

Major components: Assetic, Forms and Twitter-Bootstrap

49

SmartyBundle Documentation, Release 1.3.1

50 Chapter 16. Major components: Assetic, Forms and Twitter-Bootstrap

CHAPTER 17

Configuration Reference

51

SmartyBundle Documentation, Release 1.3.1

52 Chapter 17. Configuration Reference

CHAPTER 18

Contributing to SmartyBundle: coding standards and API

18.1 API

SmartyBundle API is generated daily using ApiGen.

You can browse it here .

53

http://apigen.org
api/index.html

SmartyBundle Documentation, Release 1.3.1

54 Chapter 18. Contributing to SmartyBundle: coding standards and API

CHAPTER 19

License

This bundle is licensed under the LGPL-3 License. See the LICENSE file for details.

55

https://github.com/noiselabs/SmartyBundle/blob/master/Resources/meta/LICENSE

SmartyBundle Documentation, Release 1.3.1

56 Chapter 19. License

CHAPTER 20

Credits

20.1 Code

A big thanks to all SmartyBundle contributors and everyone who helped along the way.

20.2 Documentation

Author Vítor Brandão (vitor@noiselabs.org)

Version 1.3.1

Date Oct 13, 2018

Note: A lot of the content found in this documentation was “borrowed” from Smarty and Symfony2 documentation
pages and websites. Credits goes to Smarty and Symfony authors and contributors.

57

https://github.com/noiselabs/SmartyBundle/graphs/contributors
mailto:vitor@noiselabs.org

SmartyBundle Documentation, Release 1.3.1

58 Chapter 20. Credits

CHAPTER 21

Indices and tables

• genindex

• search

59

SmartyBundle Documentation, Release 1.3.1

60 Chapter 21. Indices and tables

Index

A
Assetic, 20

C
Cookbook, 9

G
Global Variables, 11

T
Trimwhitespace, 11
Twitter Bootstrap, 26

61

	Introduction
	What is Smarty?
	Requirements
	License

	Installation
	Download SmartyBundle
	Enable the bundle
	Enable the Smarty template engine in the config

	Usage
	Basic usage
	Template Inheritance
	Referencing Templates

	Cookbook
	Injecting variables into all templates (i.e. Global Variables)
	Trim unnecessary whitespace from HTML markup

	Commands
	Compile Command
	Usage
	Available Options

	Extensions
	Actions Extension
	Assetic Extension
	Assets Extension
	Form Extension
	Routing Extension
	Translation Extension
	Security Extension
	Complex Access Controls with Expressions
	Using CSRF Protection in the Login Form

	Enabling custom Extensions
	Creating a SmartyBundle Extension

	Assetic
	Installation
	Usage
	Combining Assets
	Block attributes
	Full example
	Symfony/Assetic documentation

	Forms
	Rendering a Form

	Twitter Bootstrap integration
	Installation
	Composer (Symfony 2.1.x)
	Enable the bundles
	Enable the Smarty template engine

	Configuration

	Configuration Reference
	Available options

	Contributing
	Submitting bugs and feature requests
	Coding Standards
	Structure

	Authors

	Introduction
	Installation
	Basic Usage / Tips & Tricks
	SmartyBundle Extensions
	Major components: Assetic, Forms and Twitter-Bootstrap
	Configuration Reference
	Contributing to SmartyBundle: coding standards and API
	API

	License
	Credits
	Code
	Documentation

	Indices and tables

